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1 Service de Physique Théorique, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
2 Istituto Nazionale per la Fisica della Materia (INFM) and Dipartimento di Fisica dell’Universita’ di Padova,

via Marzolo 8, 35131 Padova, Italy

Received 11 February 1999

Abstract. We consider polymers made of magnetic monomers (Ising or Heisenberg-like) in a good solvent.
These polymers are modeled as self-avoiding walks on a cubic lattice, and the ferromagnetic interaction
between the spins carried by the monomers is short-ranged in space. At low temperature, these polymers
undergo a magnetic induced first order collapse transition, that we study at the mean field level. Contrasting
with an ordinary Θ point, there is a strong jump in the polymer density, as well as in its magnetization.
In the presence of a magnetic field, the collapse temperature increases, while the discontinuities decrease.
Beyond a multicritical point, the transition becomes second order and Θ-like. Monte Carlo simulations for
the Ising case are in qualitative agreement with these results.

PACS. 36.20.Ey Conformation (statistics and dynamics) – 64.70.-p Specific phase transitions – 75.50.-y
Studies of specific magnetic materials

1 Introduction

Under various solvent conditions, a polymer chain can be
either swollen or collapsed. In a bad solvent, a phase tran-
sition between these two states can occur as temperature
is varied [1]. This is the so-called Θ point, the tricritical
nature of which has been demonstrated by de Gennes [2].
The effective monomer-monomer attraction results from
tracing out the solvent degrees of freedom. At theΘ point,
the second virial coefficient of the polymer vanishes.

In this paper, we consider a different mechanism that
also yields attractive monomer-monomer interactions. The
model we study consists of a polymer chain, where each
monomer carries a spin S in an external magnetic field;
these spins interact with each other with a short-ranged
interaction. To be specific, we will consider a self-avoiding
walk (SAW) of length N , on a d-dimensional cubic lattice,
with a nearest-neighbor ferromagnetic interaction (on the
lattice) between the spins of the monomers.

Several models involving both polymeric and
magnetic-like degrees of freedom have been intro-
duced in very different contexts. A similar, but somewhat
more complicated model, was studied to describe sec-
ondary structure formation in proteins [3]: there, the
dominant interactions between the monomers are of
(electric) dipolar nature. A Potts model on a SAW was
studied as a description of vulcanization in [4]; a similar
model with quenched disorder was studied in the context
of secondary structure formation in proteins [5].
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Ising models have also been studied on a fixed SAW
geometry, yielding results quite different from those pre-
sented here [6,7]. From an experimental point of view,
organic polymeric magnets have recently become of inter-
est [8,9]. However, there has been very little interest in
their conformational changes.

In the following, we will specialize to the Ising case, and
quote some results for the Heisenberg case. The partition
function of the system reads:

Z =
∑
SAW

∑
Si=±1

exp

βJ
2

∑
i6=j

Si∆rirjSj + βh
∑
i

Si


(1)

where J is the exchange energy, β = 1
T the inverse tem-

perature, and h the external magnetic field. The spatial
position of monomer i with spin Si is ri. The symbol ∆rr′

is 1 if {r, r′} are nearest-neighbor on the lattice and 0 oth-
erwise. The sums run over all possible SAW and all spin
configurations.

This model will be studied along three lines. In Sec-
tion 2, we derive upper bounds for the free energy of the
model (in zero magnetic field) which suggest a first order
transition between a swollen paramagnetic and a collapsed
magnetized phase. In Section 3, we derive a mean-field
theory for the general model. We show that indeed for
low fields, there is a such a line of first-order transitions.
At higher fields, this transition becomes continuous. The
two regimes are separated by a multicritical G point. At
this special point, both the second and the third virial co-
efficient vanish. In Section 4, these predictions are tested
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against Monte Carlo simulations in d = 3 dimensions. The
numerical results are consistent with the theoretical phase
diagram; at low field (where the transition is strongly first
order), the agreement is even quantitative.

2 Free energy bounds

The physics of the model can be described according to
the following simple picture.
1. At high temperature, since entropy dominates, the

chain is swollen. As a result, the number of nearest-
neighbor contacts is small, and from a magnetic point
of view, the system is equivalent to a one-dimensional
Ising model. This simple picture can be expressed
through the following inequality:

Z ≥ ZSAWZ1(h) (2)

where ZSAW is the total number of SAW, and Z1(h)
is the partition function of the one-dimensional Ising
model in a field h. Using well known results [10,11]:

ZSAW ∼ µNNγ−1 (3)

where γ is a critical exponent, we obtain:

F

N
≤ −T logµ− T log(eβJ coshβh

+
√

e2βJ sinh2 βh+ e−2βJ). (4)

The best estimate in d = 3 is µ ' 4.68 for the cubic
lattice [12].

2. At low temperature, the magnetic energy is larger than
the entropy loss due to confinement, and thus the chain
collapses. The simplest picture is that of a totally mag-
netized and fully compact system, resulting in the fol-
lowing bound:

Z ≥ exp(NβJd+Nβh) ZHP (5)

where ZHP is the entropy of Hamiltonian paths (HP)
on the lattice, i.e. fully compact SAW on the lattice1.
Using a virtually exact upper bound [13] to ZHP, we
obtain:

F

N
≤ −T log

2d
e
− Jd− h. (6)

Note that in two dimensions and in zero magnetic field,
it is possible to write a more accurate bound by using
the exact expression Z2 for the Onsager partition func-
tion of the Ising model:

Z ≥ Z2ZHP. (7)

The free energy bounds of equations (4, 6) are shown
as functions of temperature in Figure 1, for d = 3 and
h = 0. The true free energy lies below these two curves,
and their intersection is an indication for a possible first
order transition between the swollen and collapsed phases.

1 A HP is a SAW which passes through each point of the
lattice exactly once.
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Fig. 1. The high temperature (solid line) and low temperature
(dashed line) free energy bounds for d = 3 and h = 0.

3 Mean-field theory

By using a Gaussian transform, it is possible to write a
field-theoretical representation for the model (1):

Z = 2N
∫ ∏

r

dϕr exp

− 1
2βJ

∑
{r,r′}

ϕr∆
−1
r,r′ϕr′

+ log
∑

SAW{ri}

N∏
i=1

cosh(ϕri + βh)

 . (8)

As usually, the mean-field theory can be obtained by per-
forming a saddle-point approximation on equation (8). We
assume that the chain is confined in a volume V with a
monomer density ρ = N

V . Assuming a translationally in-
variant field ϕ, the mean field free energy per monomer
is

f =
F

N
= −T log 2 +

T 2

2ρJq
ϕ2

−T logZSAW − T log cosh(ϕ+ βh) (9)

where q = 2d is the coordination number of the cubic lat-
tice and ZSAW is the total number of SAW of N monomers
confined in a volume V . Following reference [13], it is eas-
ily seen that:

ZSAW '
(q
e

)N
exp

(
− V (1− ρ) log(1− ρ)

)
(10)

so that

f = −T log 2 +
T 2

2ρJq
ϕ2 − T log

q

e

+T
1− ρ
ρ

log(1− ρ)− T log cosh(ϕ+ βh). (11)

This free energy is to be minimized with respect to the
field ϕ and to the volume V occupied by the chain, or
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equivalently to the monomer concentration ρ. The mean
field equations read:

T
ϕ2

2Jq
= −ρ− log(1− ρ), (12)

ϕ = βJρq tanh(ϕ+ βh). (13)

Note that this free energy holds also for a melt of chains,
where ρ is the total monomer concentration.

This set of coupled equations has a high temperature
solution ρ = 0, ϕ = 0, which describes the swollen phase
with no magnetization and vanishing monomer concen-
tration, and a low temperature solution, which describes
a collapsed phase with a finite monomer concentration and
magnetization. More precisely, for magnetic fields h < hG,
there is a first order transition (as a function of tempera-
ture) between a swollen and a collapsed phase. At higher
fields h > hG, the transition becomes second order (in
fact tricritical). For infinite fields, the magnetization sat-
urates, and the model becomes equivalent to the ordinary
Θ point as studied in many papers [14–16].

Expanding (12) and (13), one obtains the equation for
the second order line:

tanhβh =

√
T

Jq
· (14)

Close to this critical line, the concentration varies as:

ρ ∼ 1
2

1− βJq tanh2 βh

(βJq)(1 − tanh2 βh)− 1
3

(15)

and the magnetization per spin is given by

M ∼ tanhβh (16)

and remains finite, whereas the magnetization per unit
volume, given by

m ∼ ρ tanhβh (17)

vanishes.
The phase diagram is shown in Figure 2, with values

corresponding to dimension d = 3.
The first order and continuous transitions are sepa-

rated by a multicritical point, denoted by G in Figure 2.
The corresponding temperature and field are TG = 4.5J
and hG = 5.926J . At zero magnetic field (point A), the
transition temperature is Tc = 1.886J , the critical con-
centration is ρc = 0.87 and the critical magnetization per
unit volume is mc = 0.87. Note that the magnetic suscep-
tibility χ = ∂M/∂h remains finite along the second order
critical line.

The same phase diagram holds for the Heisenberg
ferromagnet, with a multicritical G point at TG =
2.31J, hG = 5.91J . The zero-field point A is at Tc =
0.844J , ρc = 0.902 and mc = 0.73.

Using (13) to eliminate ϕ as a function of ρ, it is pos-
sible to express the free energy (11) only as a function of
the monomer concentration ρ. This yields the virial ex-
pansion of the free energy. The second virial coefficient
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Fig. 2. Mean-field phase diagram in d = 3 for Ising spins. The
dashed line corresponds to a first order transition, and the solid
line to a second order (Θ-like) transition.

vanishes along the second order line (14), implying that
the transition is Θ-like (i.e. tricritical). At the multicrit-
ical G point, both the second and third virial coefficients
vanish, while the fourth order coefficient is positive.

4 Monte Carlo simulations

The Monte Carlo method [17] used to compute thermo-
dynamic as well as geometric properties of the magnetic
chain relies on the multiple Markov chain sampling. A de-
tailed description of this method can be found in [16,18].
The implementation we consider for a magnetic chain on
a three-dimensional cubic lattice, can be summarized as
follows.

We start from a single Markov chain at fixed temper-
ature T . The probability πD(T ) of a (magnetic) chain
configuration D, is given by the Boltzmann distribution
πD(T ) ∼ e−H(D)/T with

H(D) = −J
2

∑
i6=j

Si∆rirjSj − h
∑
i

Si (18)

where the thermodynamic variables Si and ri are assigned
their D-dependent values. This Markov chain is gener-
ated by a Metropolis heath bath sampling based on a hy-
brid algorithm for chains with pivot [19] a well as local
moves [20]. Pivot moves are nonlocal moves that assure
the ergodicity of the algorithm; they operate well in the
swollen phase but their efficiency deteriorate close to the
compact phase. In this respect local moves become essen-
tial to speed up the converge of the Markov chain. Finally,
in addition to the moves that deform the chain, an algo-
rithm based on Glauber dynamics is considered to update
the spin configuration along the chain. For a single Markov
chain we typically consider ∼ 106 pivot moves intercalated
by N/4 local moves and N spin updates.
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The multiple Markov chain algorithm is then imple-
mented on the hybrid algorithm described above. The idea
is to run in parallel a number p (in this work p = 20−25) of
Markov chains at different temperatures T1 > T2 > · · · >
Tp. In practice, this set of temperatures is such that the
configurations at Tj and at Tj+1 have considerable overlap
(implying that Tj and Tj+1 are close enough). We let the
Markov chains interact by possibly exchanging configura-
tions as follows. Two neighboring Markov chains (i.e. with
temperatures Tj and Tj+1) are selected at random with
uniform probability. A trial move is an attempt to swap
the two current configurations of these Markov chains. If
we denote by πK(T ) the Boltzmann probability of getting
configuration K at temperature T , and Dj and Dj+1 the
current states in the jth and (j+1)th Markov chain, then
we accept the trial move (i.e. swap Dj and Dj+1) with
probability

r(Dj ,Dj+1) = min
(

1,
πDj+1(Tj)πDj (Tj+1)
πDj (Tj)πDj+1(Tj+1)

)
· (19)

The whole process is itself a (composite) Markov chain
that is ergodic, since the underlying Markov chains are
themselves ergodic. It turns out that the swapping proce-
dure dramatically decreases the correlation times within
each Markov chain with little cost in CPU time since, in
any case, one is interested in obtaining data at many tem-
peratures [16,18].

For each multiple Markov chain run we compute es-
timates, at a discrete set of temperatures T , of quanti-
ties such as (i) the average energy 〈E〉 and specific heat
C = 〈E2〉−〈E〉2

T 2 of the chain. The per monomer quantities
will be denoted respectively by E and C (ii) the average
magnetization per monomer M = 1

N

∑
i〈Si〉 (iii) the sus-

ceptibility χ = ∂M
∂h . In addition, as a geometric quantity,

we consider the mean squared radius of gyration 〈R2〉 of
the chain. From now on, we will set J = 1, which amounts
to give the values of the field and temperature in units
of J .

We have done preliminary simulations at high (T =
10) and low (T = 1) temperature. Our results (Fig. 3)
show that the chain undergoes a swollen to collapsed phase
transition, in broad agreement with the mean field picture;
moreover, the radius of gyration is found to vary very lit-
tle with the magnetic field (note that mean field theory
yields ρc = 0.87 at Tc in zero field). Since a full explo-
ration of the (h, T ) plane is difficult, we have restricted
this paper (i) to a detailed study of the h = 0 transition
(ii) to a qualitative study of some non zero magnetic field
transitions. As mentionned above, the infinite field case
corresponds to the usual Θ situation: equation (14) then
yields Tθ = q = 6, whereas the experimental (cubic lat-
tice) value is Tθ ' 3.7 [15]. As expected in the presence
of fluctuations, the mean field parameters (including the
location of point G) are not reliable. For small h, the first
order character of the mean field transition will be seen to
improve the situation.
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Fig. 3. Log-Log plot of 〈R2〉 vs. N , for N =
80, 100, 150, 200, 300, 400. The empty and filled sym-
bols correspond respectively to T = 10 and T = 1. Val-
ues of the magnetic field are h = 0 (�), 0.5 (◦), 1 (�) and
h = 10 (4). The lines have respective slope 2ν = 1.194±0.005
and 2ν = 0.63 ± 0.04.
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Fig. 4. Specific heat per monomer vs. temperature for h = 0
and N = 80 (◦), 100 (•), 150 (�), 200 (�), 300 (4),
400 (N). Note the increase of the peak as well as its shape,
when N increases.

4.1 Results for h = 0: Evidence for a first order
transition

Our results for the specific heat per monomer C and the
susceptibility χ are respectively given in Figures 4 and 7.
The spiky character of both contrasts with the rounded
specific heat of a usual Θ point. Indeed, finite size scaling
theory [21] predicts that the peak Cmax of the specific heat
behaves, in the critical region (i.e. for large enough N), as

Cmax ∼ N
α

2−α (20)

where α is the critical exponent associated with the
temperature divergence of the specific heat. Accordingly,
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Fig. 5. Temperature location of the specific heat peak vs. 1/N ,
for N = 100, 150, 200, 300, 400.
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Fig. 6. Magnetization per spin vs. temperature for h = 0 and
N = 80 (◦), 100 (•), 150 (�), 200 (�), 300 (4), 400 (N).

the critical temperature shifts from its N = ∞ value by
an amount ∆T given by

∆T ∼ N− 1
2−α . (21)

At the Θ point, one has α = 0, implying a slow (log-
arithmic) N dependence of Cmax and ∆T ∼ 1

N1/2 (up
to a logarithmic factor). On the contrary, a thermal first
order transition corresponds to the value α = 1, yield-
ing Cmax ∼ N with a much weaker temperature shift
∆T ∼ 1

N . These scaling predictions are to be compared
with the results of Figures 5 and 12. The agreement is
satisfactory, even though it is not clear that the largest
N value, viz. N = 400, is already in the scaling region.
Further evidence for a discontinuous zero field transition
comes from Figures 6 and 8, where we show the thermal
evolution of the average magnetization per monomer M
and of the radius of gyration. All these results are consis-
tent with a first order transition at a critical temperature
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Fig. 7. Susceptibility vs. temperature for h = 0 and N =
80 (◦), 100 (•), 150 (�), 200 (�), 300 (4), 400 (N).
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Fig. 8. Squared radius of gyration of the polymer as a function
of temperature for h = 0, and N = 80 (◦), 100 (•), 150 (�),
200 (�), 300 (4), 400 (N).

Tc ' 1.80 ± 0.04, close indeed to the mean field value
TMF

c ' 1.88.
To study the phase coexistence implied by such a

transition, we have studied the probability distributions
of the magnetization M and internal energy E close
to the phase transition. Figures 9 and 10, obtained for
N = 300, suggest that the critical distributions P (M)
and P (E) are flat, in marked contrast with the usual two
peak structure at Tc [22]. This two peak structure results
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Fig. 9. Probability distribution P (M) of the magnetization
per monomer, for three different temperatures at h = 0 and
N = 300: T = 1.67 < Tc(N) dotted line, T = 1.81 > Tc(N)
solid line, T = 1.78 ' Tc(N) thick line.
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Fig. 10. Probability distribution P (E) of the internal energy
per monomer for three different temperatures at h = 0 and
N = 300: T = 1.67 < Tc(N) dotted line, T = 1.81 > Tc(N)
solid line, and T = 1.78 ' Tc(N) thick line.

from the spatial coexistence of the (bulk) phases along
a domain wall (more generally a (d − 1) interface). In
the present case, we have coexistence between phases of
different dimensionalities, namely a paramagnetic swollen
phase and a magnetized collapsed phase. It is then clear
that the “interface” can be reduced to a point, yielding
a “surface” tension of order one. This in turn explains
the flat critical distributions of Figures 9 and 10. Below
the transition, it is interesting to note that the magneti-
zation quickly saturates: a closer look at compact chain
magnetic conformations shows that the minority domains
are located on the surface of the globule, and become less
and less relevant as N grows (Fig. 11).

Fig. 11. Typical chain configuration just below the transition
(T = 1.65), for h = 0. Dark grey (resp. light grey) monomers
have up (resp. down) spins. Note that the down spins are on
the surface of the globule.
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Fig. 12. Peak of the specific heat per monomer vs. N for
different values of h: h = 0 (◦), 0.5 (•), 1 (�), 10 (�). For
h = 10, the value of Cmax is clearly not proportional to N .

4.2 Tentative studies of the continuous transition
in a field

As previously mentionned, the multicritical point G will
be pushed downwards from its mean field location. Since
the computer search for a precise determination of this
point is very time consuming, we have adopted the fol-
lowing strategy. We have performed simulations for small
(h = 0.5 and h = 1) and large (h = 5 and h = 10) mag-
netic field.

The first evidence for a second order transition in
large fields comes from Figure 12, where the specific heat
maximum for h = 10 behaves very differently from its
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Fig. 13. Probability distribution P (E) of the internal energy
per monomer for three different temperatures at h = 0.5 and
N = 300: T = 1.74 < Tc(N) dotted line, T = 1.89 > Tc(N)
solid line, T = 1.81 ' Tc(N) thick line.

small field values: for h = 0.5 and h = 1, one apparently
gets the same behaviour as with h = 0, namely Cmax ∼ N .
The existence of a second order transition for h large is
corroborated by Figures 14 and 15. For h = 5, the critical
probability distribution is very different from its h = 0
counterpart (Fig. 10). A finite size scaling analysis of the
data for the same value of the field yields, in a rather
convincing manner, a second order Θ like transition at
Tc ∼ 3.4 (remember that limh→∞ Tc(h) ' 3.7). We there-
fore obtain hG < 5. To get a better estimate of hG, we have
computed the probability distribution P (E) of the inter-
nal energy for h = 0.5 (Fig. 13). It clearly interpolates
between Figures 10 and 14, but it is not easy to interpret
the data as representative of a continuous or discontinuous
transition. To summarize, we have presented evidence for
a continuous transition for large h. The precise position
of the point G is left for future work.

5 Conclusion

We have seen that ferromagnetic interactions may drive
the collapse of a polymer, even in a good solvent. This
collapse is very sensitive to the presence of an external
magnetic field. It might be possible to design new poly-
meric magnetic materials, for which the collapse transition
is triggered by a magnetic field, at room temperature.

We have also done preliminary simulations on the two-
dimensional case (Ising polymer on a square lattice): for
h = 0, we get a quite abrupt transition around Tc ∼ 1.18
(which can be compared to the value Tθ ' 1.5 [23]). Since
the critical dimensions associated with the Θ point (ϕ6

theory) and the multicritical G point (ϕ8 theory) are re-
spectively dΘ = 3 and dG = 8

3 , one expects fluctuations
to be important. Further work is needed to elucidate their
influence on the mean field phase diagram.

−5 −4 −3 −2
E/N

0

0.01

0.02

0.03

P(E)

Fig. 14. Probability distribution P (E) of the internal energy
per monomer for three different temperatures at h = 5 and
N = 300: T = 1.67 < Tc(N) dotted line, T = 4 > Tc(N) solid
line, T = 2.43 ' Tc(N) solid thicker line.
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Fig. 15. Search for a second order Θ like transition for

h = 5: scaled radius of gyration 〈R2

N 〉 vs. temperature for N =
100 (•), 150 (�), 200 (�), 250 (4), 300 (+), 350 (∗), 400 (H).
A crossing occurs for T ' 3.4.

Finally, the present model can be generalized to
include

(i) longer range or competing interactions (e.g. ANNNI
models);

(ii) non Ising local variables (O(n) spins, quadrupoles, ...);
(iii) disorder, either in an annealed (BEG-like [24]) or in a

quenched way [25].
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